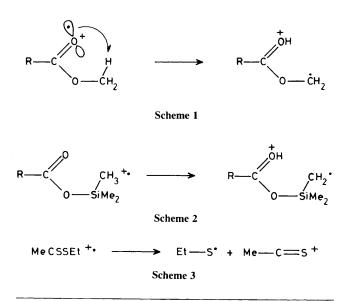
The Radical Cation of Ethyl Dithioacetate


Christopher J. Rhodes

School of Chemistry, Thames Polytechnic, Wellington St., Woolwich, London SE18 6PF, U.K.

In contrast with ester cations (RCO₂R) which rearrange spontaneously at 77 K *via* intramolecular hydrogen atom transfer, stable π -radical cations of ethyl dithioacetate (MeCSSEt++) have been observed by e.s.r. spectroscopy, following γ -irradiation of dilute frozen solutions in CFCI₃ at 77 K.

Radical cations of carboxylic esters have been the subject of debate and after some controversy, it is generally agreed that the e.s.r. spectra observed following γ - or X-irradiation of esters in freon solvents at 77 K are not due to the primary cations, but to radicals arising from intramolecular hydrogen atom transfer,¹⁻⁵ (*e.g.* Scheme 1) following ionisation of the in-plane oxygen lone-pair orbital. Exceptions to this are trimethylsilyl⁶ and neopentyl⁴ esters, in which the positive hole is largely confined to the Me₃Si- or Me₃C-CH₂- group, rather than to the RCO₂- moiety, and are stable at 77 K. On allowing the freon matrix to warm from 77 K, rearranged cations are observed, but these have been proposed⁶ to arise from the proton transfer reaction (Scheme 2), which is apparently less facile than Scheme 1.

In view of these results, we were interested in studying the behaviour of a second-row analogue, viz. the dithioester, MeCSSEt; we are unaware of any previous report of an e.s.r. study of a thioester radical cation. Following y-irradiation of the title compound as a dilute frozen solution in $CFCl_3$ at 77 K, e.s.r. spectra such as that shown in Figure 1 were recorded, from which the following data were extracted: $g_x = 2.055, g_y =$ 2.008, $g_z = 2.000$; A(2H) = 16 G. † In contrast with the results for RCO_2R^+ cations, the spectrum is clearly not due to carbon centred radicals, given the extent of the g-anisotropy, and has an overall appearance similar to that reported previously for R-S[•] radicals in the solid state^{7,8} with a low field $g_{\parallel}(g_x)$ feature which is well separated from g_y and g_z ; R-S. radicals could be accounted for by fragmentation of the parent cation (Scheme 3). However, the value of g_x (2.055) is much less than that reported for R-S[•] radicals (2.1-2.3, depending strongly on their environment) and the triplet splitting [A(H)]= 16 G] would appear very low for MeCH₂-S[•] radicals on the basis of both a recent correlation of π -bond energies with

 $\dagger 1 \text{ G} = 10^{-4} \text{ T}.$

 β -proton couplings⁹ and a liquid phase study of R₂C(Mu)–S[•] radicals¹⁰ by the μ SR technique, in which muon couplings of 40—50 G were measured. We therefore consider that the spectrum is due to intact MeCSSEt⁺⁺ cations. CNDO/2 calculations¹¹ predict that the HOMO in

CNDO/2 calculations¹¹ predict that the HOMO in MeCSSMe is the in-plane orbital (1) comprising mainly of the sulphur $3p_y$ orbital. However, the cation which is formed cannot be that with an in-plane SOMO of the type (1), since a negligible coupling to the two MeCH₂- protons would be expected, in contrast with that observed (16 G). We therefore assign the cation as being the π -form in which the unpaired electron is 'allylically' delocalised, and occupies the nonbonding π_2 orbital (2).

According to photoelectron results,¹² the HOMO in RCO₂R esters is the in-plane (n_o) orbital, and the chemistry of RCO₂R⁺⁺ cations, both in freon matrices¹⁻⁵ and in the gas-phase,¹³ is compatible with ionisation of this orbital to form an oxygen centred radical which rapidly abstracts a hydrogen atom in an intramolecular step (Scheme 1) (In some higher esters, fragmentation of the rearranged species occurs^{2,4}). The reaction of Scheme 1 is expected to be exothermic on the basis of typical O–H bond energies (110 kcal/mol)¹⁴ compared with C–H bond energies (*ca.* 98 kcal/mol).¹⁴ In the case of the dithioester, a radical transfer step of this kind would be endothermic (and have a higher activation energy) given typical S–H bond energies (*ca.* 82 kcal/mol);¹⁴ we note that addition of muonium atoms to thiocarbonyl compounds occurs preferentially at carbon with the formation of

 $\frac{1}{x^{10}}$

(2)

(1)

Figure 1. *X*-Band e.s.r. spectrum recorded following γ -irradiation of MeCSSEt as a dilute solution in CFCl₃ at 77 K, and assigned to the parent π -radical cations.

 $R_2C(Mu)$ –S[•] radicals rather than at sulphur to form R_2C –SMu radicals¹⁰ in contrast with carbonyl derivatives which form R_2C –OMu radicals.¹⁵

It seems possible, then, that ionisation might take place from the lone-pair orbital (1) as expected from the CNDO/2 order of orbitals, but the intramolecular H-atom transfer step is sufficiently slow compared with the oxygen case (Scheme 1) that relaxation of the cation can occur to form the delocalised (π_2) state.

I thank Professor Martyn Symons for access to e.s.r. facilities.

Received, 19th July 1988; Com. 8/02903B

References

- 1 M. Iwasaki, H. Muto, K. Toriyama, and K. Nunome, Chem. Phys. Lett., 1984, 105, 586.
- 2 H. Muto, K. Toriyama, K. Nonome, and M. Iwasaki, Chem. Phys. Lett., 1984, 105, 592.

- 3 M. D. Sevilla, D. Becker, C. L. Sevilla, and S. Swarts, J. Phys. Chem., 1985, 89, 633.
- 4 M. D. Sevilla, D. Becker, C. L. Sevilla, K. Plante, and S. Swarts, *Faraday Discuss. Chem. Soc.*, 1984, **78**, 71.
- 5 J. Rideout and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1986, 625.
- 6 C. J. Rhodes, J. Organomet. Chem., 1987, 336, 317.
- 7 M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1977, 2005.
- 8 K. Akasaka, J. Chem. Phys., 1965, 43, 1182.
- 9 C. J. Rhodes, J. Chem. Soc., Chem. Commun., 1988, 758.
- 10 C. J. Rhodes, M. C. R. Symons, and E. Roduner, J. Chem. Soc., Chem. Commun., 1988, 3.
- 11 A. Flamini, E. Semprini, and G. Condorelli, *Chem. Phys. Lett.*, 1975, **32**, 365.
- 12 D. A. Sweigart and D. W. Turner, J. Am. Chem. Soc., 1972, 94, 5592.
- 13 H. Budzikiewicz, C. Djerassi, and H. D. Williams, 'Mass Spectrometry of Organic Compounds,' Holden-Day, San Francisco, 1967.
- 14 J. March, 'Advanced Organic Chemistry: Reactions, Mechanisms and Structure,' McGraw-Hill, New York, 1968.
- 15 S. F. J. Cox, D. A. Geeson, C. J. Rhodes, E. Roduner, C. A. Scott, and M. C. R. Symons, *Hyperfine Interactions*, 1986, 32, 763.